Перспективные направления в лечении герпетической инфекции глаза
Ключевые слова:
глаз, вирус простого герпеса 1-го типа, лечение, редактирование геномаАннотация
Данный обзор литературы посвящен современной технологии лечения герпетической инфекции глаза путем редактирования генома вируса. Важность проблемы заключается в том, что в настоящее время нет препаратов, способных уничтожить герпесвирусы, а их пожизненная персистенция в организме человека может приводить к рецидивам с развитием слепоты и слабовидения. В обзоре описаны результаты доклинических исследований применения технологии CRISPR-ассоциированного белка 9 (CRISPR/Cas9) в лечении герпетической инфекции глаз, а также при использовании данной технологии в клинике при пересадке роговицы в случаях тяжелого стромального кератита.
Библиографические ссылки
1. Flaxman SR., Bourne RRA., Resnikoff S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob. Health. 2017;5: 1221–1234. doi: 10.1016/S2214-109X(17)30393-5
2. Vadlapudi AD, Vadlapatla RK, Mitra AK. Update on emerging antivirals for the management of herpes simplex virus infections: a patenting perspective. Recent Pat Antiinfect Drug Discov. 2013Apr;8: 55–67.
3. Jiang YC, Feng H, Lin YC, Guo XR. New strategies against drug resistance to herpes simplex virus. Int J Oral Sci. 2016;8(1): 1–6. doi: 10.1038/ijos.2016.3
4. Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57: 448–462. doi: 10.1016/j.survophthal.2012.01.005
5. Koganti R, Yadavalli T, Shukla D. Current and Emerging Therapies for Ocular Herpes Simplex Virus Type-1 Infections. Microorganisms. 2019;7: 429. doi: 10.3390/microorganisms7100429
6. Crute JJ, et al. Herpes simplex virus helicase-primase inhibitors are active in animal models of human disease. Nat Med. 2002Apr;8(4): 386-91.doi: 10.1038/nm0402-386.
7. Kleymann G, Fischer R, Betz UAK, et al. New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med. 2002;8(4): 392–398. doi: 10.1038/ nm0402-392
8. Jaishankar D, Yakoub AM, Yadavalli T, et al. An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med. 2018;10(428): eaan5861. doi: 10.1126/scitranslmed.aan5861
9. Zhou N, Zheng D, You Q, Chen T, Jiang J, Shen W, Zhang D, Liu J, Chen D, Hu K. Therapeutic Potential of Biochanin A in Herpes Simplex Keratitis. Pharmaceuticals (Basel). 2023;16(9): 1240. doi: 10.3390/ph16091240
10. Caruso SM, Quinn PM, da Costa BL & Tsang SH. CRISPR/Cas therapeutic strategies for autosomal dominant disorders. J Clin Invest. 2022;132(9): e158287. doi: 10.1172/JCI158287
11. Suh S, Choi EH, Raguram A, Liu DR, Palczewski K. Precision genome editing in the eye. Proc Natl Acad Sci USA. 2022;119: e2210104119. doi: 10.1073/pnas.2210104119
12. Yan AL, Du SW, Palczewski K. Genome editing, a superior therapy for inherited retinal diseases. Vis Res. 2023;206: 108192. doi: 10.1016/j.visres.2023.108192
13. Du SW, Palczewski K. Eye on genome editing. J Exp Med. 2023;220(5): e20230146. doi: 10.1084/jem.20230146
14. Taylor A. Ocular immune privilege. Eye. 2009;23: 1885–1889. doi: 10.1038/eye.2008.382
15. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3(11): 879–889. doi: 10.1038/nri1224
16. Кадышев В.В., Зольникова И.В., Халанская О.В., Степанова А.А., Куцев С.И. Наследственная дистрофия сетчатки: первые результаты после RPE65-генозаместительной терапии в России. Вестник офтальмологии. 2022;138(4): 48–57. [Kadyshev VV, Zolnikova IV, Khalanskaya OV, Stepanova AA, Kutsev SI. Inherited retinal dystrophy: first results of RPE65 gene replacement therapy in Russia. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2022;138(4): 48–57. (In Russ.)] doi: 10.17116/ oftalma202213804148
17. Russell S, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390: 849–860. doi: 10.1016/S0140-6736(17)31868-8
18. Nelson CE, Wu Y, Gemberling MP, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med. 2019;25(3): 427–432. doi: 10.1038/s41591-019-0344-3
19. Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med. 2019;25(2): 229–233. doi: 10.1038/s41591-018-0327-9
20. Beyret E, Liao H-K, Yamamotoet M, et al. Single-dose CRISPRCas9 therapy extends lifespan of mice with Hutchinson-Gilford progeria syndrome. Nat Med. 2019;25(3): 419–422. doi: 10.1038/s41591-019-0343-4
21. Santiago-Fernandez O, Osorio FG, Quesadaet V, et al. Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med. 2019;25(3): 423–426. doi: 10.1038/s41591-018-0338-6
22. Lee B., Lee K, Pandaet S, et al. Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng. 2018;2(7): 497–507. doi: 10.1038/s41551-018-0252-8
23. Gao X, Tao Y, Lamas V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. 2018;553(7687): 217–221. doi: 10.1038/nature25164
24. Makarova KS, Grishin NV, Shabalina SA, Wolf YuI, Kunin EV. A putative RNAi-based prokaryotic immune system: computational analysis of the predicted enzymatic mechanism, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Straight. 2006;1: 7. doi: 10.1186/1745-6150-1-7
25. Wang JY, Doudna JA. CRISPR technology: a decade of genome editing is only the beginning. Science. 2023;379: eadd8643. doi: 10.1126/science.add8643
26. Смирнова А.В., Юнусова А.М., Лукьянчикова В.А., Баттулин Н.Р. Система CRISPR/Cas9 – универсальный инструмент геномной инженерии. Вавиловский журнал генетики и селекции. 2016;20(4): 493–510. [Smirnovа AV, Yunusova AM, Lukyanchikova VA, Battulin NR. CRISPR/Cas9, a universal tool for genomic engineering. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(4): 493–510. (In Russ.)] doi: 10.18699/VJ16.175
27. Weerasooriya S, DiScipio KA, Darwish AS, Bai P, Weller SK. Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proc Natl Acad Sci. USA. 2019;116: 1033–1042. doi: 10.1073/pnas.1817642116
28. Weller SK, Coen DM. Herpes simplex viruses: mechanisms of DNA replication. Cold Spring Harb Perspect Biol. 2012;4: a013011. doi: 10.1101/cshperspect.a013011
29. Yin D, Ling S, Wang D, et al. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat Biotechnol. 2021;39: 567–577. doi: 10.1038/s41587-020-00781-8/
30. Wei A, Yin D, Zhai Z, et al. In vivo CRISPR gene editing in patients with herpes stromal keratitis. Preprint at medRxiv. 2023. doi: 10.1101/2023.02.21.23285822