Пигментный ретинит: современные методы коррекции зрения и лечения

Авторы

  • Г.М. Казакбаева Уфимский НИИ глазных болезней ФГБОУ ВО БГМУ МЗ РФ, Уфа, Россия
  • А.М. Низамутдинова Уфимский НИИ глазных болезней ФГБОУ ВО БГМУ МЗ РФ, Уфа, Россия
  • В.К. Суркова Уфимский НИИ глазных болезней ФГБОУ ВО БГМУ МЗ РФ, Уфа, Россия

Ключевые слова:

пигментный ретинит, наследственные заболевания сетчатки, генная терапия

Аннотация

Пигментный ретинит представляет собой группу наследственных заболеваний сетчатки, характеризующихся прогрессирующей дегенерацией палочковых и колбочковых фоторецепторов и пигментного эпителия сетчатки. В обзорной статье рассмотрены вопросы патогенеза, клинических проявлений, диагностики, современных методов лечения данного заболевания, доказавших свою эффективность, а также новые исследования по проблеме терапии пигментного ретинита.

Библиографические ссылки

1. Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66: 157–186. doi: 10.1016/j.preteyeres.2018.03.005

2. Fahim A. Retinitis pigmentosa: recent advances and future directions in diagnosis and management. Curr Opin Pediatr. 2018;30(6): 725–733. doi: 10.1097/MOP.0000000000000690

3. Wang AL, Knight DK, Vu TT, Mehta MC. Retinitis Pigmentosa: Review of Current Treatment. Int Ophthalmol Clin. 2019;59(1): 263–280. doi: 10.1097/IIO.0000000000000256

4. Li ZY, Possin DE, Milam AH. Histopathology of bone spicule pigmentation in retinitis pigmentosa. Ophthalmology 1995;102: 805–816. doi: 10.1016/s0161-6420(95)30953-0

5. Berson EL. Retinitis pigmentosa. The Friedenwald Lecture. Invest. Ophthalmol Vis Sci. 1993;34: 1659–1676.

6. Yu DY, Cringle SJ. Retinal degeneration and local oxygen metabolism. Exp Eye Res. 2005;80: 745–751. doi: 10.1016/j.exer.2005.01.018

7. Falsini B, Galli-Resta I, Fadda A, Ziccardi L, Piccardi M, Iarossi G, Resta G. Long-term decline of central cone function in retinitis pigmentosa evaluated by focal electroretinogram. Invest Ophthalmol Vis Sci. 2012;53(12): 7701–7709. doi: 10.1167/iovs.12-11017

8. Xu M, Zhai Y, MacDonald IM. Visual field progression in retinitis pigmentosa. Investig Ophthalmol Vis Sci. 2020;61: 6. doi: 10.1167/iovs.61.6.56

9. Oh JK, Nuzbrokh Y, Lima de Carvalho JR Jr, Ryu J, Tsang SH. Optical coherence tomography in the evaluation of retinitis pigmentosa. Ophthalmic Genet. 2020;41(5): 413–419. doi: 10.1080/13816810.2020.1780619

10. Adilovic M, Ignjatovic E, Cabric A. Optical Coherence Tomography (OCT) Diagnostic of Retinitis Pigmentosa. Case Study. Acta Inform Med. 2022;30(4): 329–333. doi: 10.5455/aim.2022.30.329-333

11. Chen L, Wang N, Lai M, Hou F, He J, Fan X, Yao X, Wang R. Clinical and genetic investigations in Chinese families with retinitis pigmentosa. Exp Biol Med (Maywood). 2022;247(12): 1030–1038. doi: 10.1177/15353702221085711

12. Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 2010;29: 335–375 doi: 10.1016/j.preteyeres.2010.03.004

13. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet. 2010;11: 273–284. doi: 10.1038/nrg2717

14. Шурыгина М.Ф., Хотеева А.М. Диагностика наследственных дистрофий сетчатки с позиции генной терапии. Вестник офтальмологии. 2021;137(4): 145-151. [Shurygina MF, Khoteeva AM. Diagnostics of inherited retinal degenerations by gene therapy. Vestnik Oftalmologii. 2021;137(4):145-151. (In Russ)] doi: 10.17116/oftalma2021137041145

15. Fahim AT, Daiger SP, Weleber RG. Nonsyndromic Retinitis Pigmentosa Overview. 2000 Aug 4 [Updated 2023 Apr 6]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2024.

16. O’Neal TB, Luther EE. Retinitis Pigmentosa. StatPearls Publishing; 2021.

17. Dhurandhar D, Sahoo N, Mariappan I, Narayanan R. Gene Therapy in Retinal Diseases: A Review. Indian J. Ophthalmol. 2021;69: 2257–2265. doi: 10.4103/ijo.IJO_3117_20

18. FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. Available from: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss/ [Accessed 28 February 2025]

19. New gene therapy for rare inherited disorder causing vision loss recommended for approval Available from: https://www.ema.europa.eu/en/news/new-gene-therapy-rare-inherited-disorder-causing-vision-loss-recommended-approval [Accessed 28 February 2025]

20. Государственный реестр лекарственных средств. [State register of medicines Available from: https://grls.rosminzdrav.ru/Grls_View_v2.aspx?routingGuid=60557c41-7b20-4a5a-99e5-8624bfe6581b&t= [Accessed 28 February 2025] (In Russ.)]

21. Testa F, Bacci G, Falsini B, et al. Voretigene neparvovec for inherited retinal dystrophy due to RPE65 mutations: a scoping review of eligibility and treatment challenges from clinical trials to real practice. Eye. 2024;38: 2504–2515. doi: 10.1038/s41433-024-03065-6

22. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr., Mingozzi F, Bennicelli J. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358: 2240–2248. doi: 10.1056/NEJMoa0802315

23. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390: 849–860. doi: 10.1016/S0140-6736(17)31868-8

24. Sengillo JD, Gregori NZ, Sisk RA, Weng CY, Berrocal AM, Davis JL, et al. Visual acuity, retinal morphology, and patients’ perceptions after voretigene neparovec-rzyl therapy for RPE65-associated retinal disease. Ophthalmol Retin. 2022;6: 273–283. doi: 10.1016/j.oret.2021.11.005

25. Deng C, Zhao PY, Branham K, Schlegel D, Fahim AT, Jayasundera TK, et al. Real-world outcomes of voretigene neparvovec treatment in pediatric patients with RPE65-associated Leber congenital amaurosis. Graefes Arch Clin Exp Ophthalmol. 2022;260: 1543–1550. doi: 10.1007/s00417-021-05508-2

26. RST-001 Phase I/II Trial for Advanced Retinitis Pigmentosa Available from:https://clinicaltrials.gov/study/NCT06388200?iOS=&cond=Retinitis%20Pigmentosa&rank=9#study-overview [Accessed 28 February 2025]

27. PDE6A Gene Therapy for Retinitis Pigmentosa (Pigment) Available from:https://clinicaltrials.gov/study/NCT04611503?iOS=&cond=Retinitis%20Pigmentosa&viewType=Table&page=2&rank=12 [Accessed 28 February 2025]

28. Schwartz SG, Wang X, Chavis P, Kuriyan AE, Abariga SA. Vitamin A and fish oils for preventing the progression of retinitis pigmentosa. Cochrane Database Syst Rev. 2020;6(6): CD008428. doi: 10.1002/14651858.CD008428

29. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111(6): 761–772. doi: 10.1001/archopht.1993.01090060049022

30. Massof RW, Finkelstein D. Supplemental vitamin A retards loss of ERG amplitude in retinitis pigmentosa. Arch Ophthalmol. 1993;111(6): 751–754. doi: 10.1001/archopht.1993.01090060039019

31. Berson EL, Rosner B, Sandberg MA, et al: Vitamin A supplementation for retinitis pigmentosa. Correspondence Arch Ophthalmol. 1993;111(11): 1456–1459. doi: 10.1001/archopht.1993.01090110014001

32. Berson EL, Rosner B, Sandberg MA, et al: Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol. 2004;122(9): 1297–1305. doi: 10.1001/archopht.122.9.1297

33. Berson EL, Rosner B, Sandberg MA, et al: Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: Subgroup analyses. Arch Ophthalmol. 2004;122(9): 1306–1314. doi: 10.1001/archopht.122.9.1306

34. Berson EL, Rosner B, Sandberg MA, et al. Clinical trial of lutein in patients with retinitis pigmentosa receiving vitamin A. Arch Ophthalmol. 2010;128(4): 403–411. doi: 10.1001/archophthalmol.2010.32

35. Berson EL. Nutrition and retinal degenerations. Int Ophthalmol Clin. 2000;40: 93–111. doi: 10.1097/00004397-200010000-00008

36. Pasantes-Morales H, Quiroz H, Quesada O. Treatment with Taurine, Diltiazem, and Vitamin E Retards the Progressive Visual Field Reduction in Retinitis Pigmentosa: A 3-Year Follow-Up Study. Metab Brain Dis. 2002;17: 183–197. doi: 10.1023/A:1019926122125

37. Comander J, Weigel DiFranco C, Sanderson K, Place E, Maher M, Zampaglione E, Zhao Y, Huckfeldt RM, Bujakowska KM, Pierce E. Natural history of retinitis pigmentosa based on genotype, vitamin A/E supplementation, and an electroretinogram biomarker. JCI Insight. 2023;8(15): e167546. doi: 10.1172/jci.insight.167546

38. Miller A. The road to visual prosthesis: a timeline. Sudbury: Technology Networks; 2022.

39. Ramirez KA, Drew-Bear LE, Vega-Garces M, Betancourt-Belandria H, Arevalo JF. An update on visual prosthesis. Int J Retina Vitreous. 2023;9(1): 73. doi: 10.1186/s40942-023-00498-1

40. Ghezzi D. Retinal prostheses: progress toward the next generation implants. Front Neurosci. 2015;9: 290. doi: 10.3389/fnins.2015.00290

41. Wang G, Greenberg RJ. Epiretinal prosthesis. In: Bhushan B, editor. Encyclopedia of nanotechnology. Dordrecht: Springer; 2012: 789–97. doi: 10.1007/978-90-481-9751-4_270

42. Nowik K, Langwińska-Wośko E, Skopiński P, Nowik KE, Szaflik JP. Bionic eye review–an update. J Clin Neurosci. 2020;78: 8–19 doi: 10.1016/j.jocn.2020.05.041

43. Yanovitch L, Raz-Prag D, Hanein Y. A new high-resolution three-dimensional retinal implant: system design and preliminary human results. bioRxiv. 2022;09(14):507901. doi: 10.1101/2022.09.14.507901

44. Xu H, Zhong X, Pang C, Zou J, Chen W, Wang X, et al. First human results with the 256 channel intelligent micro implant eye (IMIE 256). Transl Vis Sci Technol. 2021;10(10): 14. doi: 10.1167/tvst.10.10.14

45. Ferlauto L, Airaghi Leccardi MJI, Chenais NAL, Gilliéron SCA, Vagni P, Bevilacqua M, et al. Design and validation of a foldable and photovoltaic wide-field epiretinal prosthesis. Nat Commun. 2018;9(1): 992. doi: 10.1038/s41467-018-03386-7

46. Vagni P, Airaghi Leccardi MJI, Vila C-H, Zollinger EG, Sherafatipour G, Wolfensberger TJ, et al. POLYRETINA restores light responses in vivo in blind Göttingen minipigs. Nat Commun. 2022;13(1): 3678. doi: 10.1038/s41467-022-31180-z

47. Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol. 2019;11: 2515841418817501. doi: 10.1177/2515841418817501

48. Petoe MA, Titchener SA, Kolic M, Kentler WG, Abbott CJ, Nayagam DAX, et al. A second-generation (44-Channel) suprachoroidal retinal prosthesis: interim clinical trial results. Transl Vis Sci Technol. 2021;10(10): 12. doi: 10.1167/tvst.10.10.12

49. Eggenberger SC, James NL, Ho C, Eamegdool SS, Tatarinoff V, Craig NA, et al. Implantation and long-term assessment of the stability and biocompatibility of a novel 98 channel suprachoroidal visual prosthesis in sheep. Biomaterials. 2021;279: 121191. doi: 10.1016/j.biomaterials.2021.121191

50. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Morimoto T, Ikuno Y, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52(7): 4726–4733. doi: 10.1167/iovs.10-6836

51. Fujikado T, Kamei M, Sakaguchi H, Kanda H, Endo T, Hirota M, et al. One-year outcome of 49-channel suprachoroidal-transretinal stimulation prosthesis in patients with advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2016;57(14): 6147–6157. doi: 10.1167/iovs.16-20367

52. Wang V, Kuriyan AE. Optoelectronic devices for vision restoration. Curr Ophthalmol Rep. 2020;8(2): 69–77. doi: 10.1007/s40135-020-00232-2

53. Early Feasibility Clinical Trial of a Visual Cortical Prosthesis. Available from:https://clinicaltrials.gov/study/NCT03344848-s-study-overview [Accessed 28 February 2025]

54. Vivani Medical Subsidiary Cortigent to Present Orion Clinical Study Results at The Eye and The Chip World Research Congress on Artificial Vision October 8–10. Available from:https://investors-vivani.com/investors/news-events/press-releases/detail/163/vivani-medical-subsidiary-cortigent-to-present-orion [Accessed 28 February 2025]

55. Luo Yili, da Cruz I. The Argus Internal prosthesis system. Prog Retin Eye Res. 2016;50: 89–107. doi: 10.1016/j.preteyeres.2015.09.003

56. Humayun MS, Dom JD, da Cruz I, Dagnelle G, Sahel JA, Stanga PE, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ, Argus II Study Group. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology. 2012;119(4): 779–788. doi: 10.1016/j.ophthalmol.1990.028

57. Argus II. Retinal prosthesis system (ClinicalTrials.gov web site). 2018. Available at: https://clinicaltrials.gov/ct2/show/NCT03418116 [Accessed May 26, 2018]

58. Muqit M, LeMer Y, De Rothschild A, et al. Results at 6 months. 2017. Available at: http://www.pistum-vision.com/en/clinical-trial/retinitis-pigmentosa-iris-ii/results-at-6-months [Accessed 27 August 2018]

59. Stingl K, Schipper R, Bartz-Schmidt KU, et al. Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations. Front Neurosci. 2017;11: 445. doi: 10.3389/fnins.2017.00445

Загрузки

Опубликован

2025-04-08

Как цитировать

Казакбаева, Г., Низамутдинова, А., & Суркова, В. (2025). Пигментный ретинит: современные методы коррекции зрения и лечения. Точка зрения. Восток–Запад, 12(1), 64–70. извлечено от https://east-west-journal.ru/index.php/east-west/article/view/489