Изменения толщины хориоидеи при различных глазных заболеваниях на ОКТ

Авторы

  • Л.А. Казымова Кафедра офтальмологии Азербайджанского медицинского университета, Баку, Азербайджан

Ключевые слова:

хориоидея, оптическая когерентная томография, диабетическая ретинопатия, возрастная макулярная дегенерация, центральная серозная хориоретинопатия, миопическая болезнь

Аннотация

Несмотря на то что сосудистая оболочка играет важную роль в строении и функционировании глаза, она детально не изучена in vivo. Усовершенствования технологии оптической когерентной томографии (ОКТ) позволяют проводить рутинную визуализацию сосудистой оболочки и глубоких структур зрительного нерва у большинства пациентов. Несколько переменных, таких как возраст, осевая длина и время суток, влияют на толщину хориоидеи и должны учитываться при интерпретации данных о толщине хориоидеи. Толщина хориоидеи может быть использована для дифференциации между центральной серозной хориоретинопатией (ЦСХ), полипоидной хориоидальной васкулопатией (ПХВ) и экссудативной возрастной макулярной дегенерацией (ВМД). Усовершенствованная глубинно-оптическая когерентная томография (EDI-OCT) сосудистой оболочки может обнаружить опухоли, которые не могут быть обнаружены с помощью ультразвука. Изучение сосудистой оболочки может помочь нам получить представление о патогенезе ряда заболеваний – ВМД, ЦСХ, опухоли хориоидеи, ПХВ.
Цель исследования. Обзор современной литературы по хориоидальной визуализации с помощью ОКТ.

Библиографические ссылки

1. Margolis R, Spide RF. A pilot study of enhanced depth optical coherence tomography of the normal choroid. Am J Ophthalmol. 2009;147: 811–815. doi: 10.1016/j.ajo.2008.12.008

2. Manjunath V, Taha M, Fujimoto JG, Duker JS. Choroidal thickness in normal eyes measured with Cirrus HD optical coherence tomography. Am J Ophthalmol. 2010;150:325–329. doi: 10.1016/j.ajo.2010.04.018

3. Usui S, Ikuno Y, Akiba M, Maruko I, Sekiryu T, Nishida K, Iida T. Circadian changes in subfoveal choroidal thickness and relationships with circulatory factors in healthy individuals. Invest Ophthalmol Vis Sci. 2012;53: 2300–2307. doi: 10.1167/iovs.11-8383

4. Ikuno Y, Maruko I, Yasuno Y, Miura M, Sekiryu T, Nishida K, Iida T. Reproducibility of retinal and choroidal thickness measurements with advanced depth imaging and high-penetration optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52: 5536–5540. doi: 10.1167/iovs.10-6811

5. Branchini I, Regatieri CV, Flores-Moreno I, Baumann B, Fujimoto JG, Duker JS. Reproducibility of choroidal thickness measurements in three spectral domain optical coherence tomography systems. Ophthalmology. 2012;9: 119–123. doi: 10.1016/j.ophtha.2011.07.002

6. Branchini IA, Adhi M, Regatieri KV, Nandakumar N, Liu JJ, Laver N, Fujimoto JG, Duker JS. Analysis of the morphological features of the choroid and vasculature of healthy eyes using optical coherence tomography in the spectrum domain. Ophthalmology. 2013;120: 1901–1908. doi: 10.1016/j.ophtha.2013.01.066

7. Ozdemir H, Arf S, Karachorlu M. Makula hastaliklamda optik koherens tomografi. Ganes Trip Kitabevi. 2014. https://flipflashpages.uniflip.com/3/34834/341527/pub/document.pdf

8. Zhang I, Li K, Niemeyer M, Mullins RF, Shoruba M. Automated Choroidal Segmentation from Clinical SD-OCT Invest Ophthalmology Vis Sci. 2012;53:7510–7519. doi:10.1167/jovs.12-10311

9. Ouyang Y, Heussen FM, Molwa N, Walsh AS, Durbin MK, Keane A, et al. Spatial distribution of posterior pole choroidal thickness using spectral domain optical coherence tomography Invest Ophthalmol Vis Sci. 2011;52:7019–7026. doi:10.1167/jovs.11-8046

10. Spide RF, Koizumi H, Pozzoni MS. Improved depth imaging in the spectral domain of optical coherence tomography. doi:10.1016/j.aip.2008.05.032

11. Rahman W, Chen FK, Yeo J, Tufail PA, Da Cruz L. Reproducibility of manual subfoveal choroidal thickness measurements in healthy patients using depth-enhanced optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:2267–2271. doi:10.1167/jovs.10-6024

12. Branchini L, Regatieri KV, Flores-Moreno I, Fujimoto JG, Duker JS. Reproducibility of choroidal thickness measurements in three spectral domain optical coherence tomography systems. Ophthalmology. 2012;119:119–123. doi:10.1016/j.ophtha.2011.07.002

13. Chhablani J, Barteselli G, Wang H, El-Emam S, Kozak I, Doedek A, et al., Repeatability and reproducibility of manual choroidal volume measurements using depth-enhanced optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:2274–2280. doi:10.1167/jovs.12-9435

14. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spide RF. Enhanced optical coherence tomography of the urea in high myopia. Am J Ophthalmol. 2009;148:445–450. doi:10.1016/j.aip.2009.04.029

15. Nishida Y, Fujiwara T, Imamura Y, Lima LL, Kurosaka D, Spide RF. Choroidal thickness and visual acuity in myopic eyes. Retina. 2012;32:1229–1236. doi:10.1097/AE.0001363182459990

16. Lee HK, Larsen M, Chew KF. Subfoveal choroidal thickness as a function of sex and axial length in 93 Danish university students. Invest Ophthalmol Vis Sci. 2011;52:8438–8441. doi:10.1167/jovs.11-8108

17. Chen FK, Yeo J, Rahman W, Petzl J, Tufail A, Da Cruz L. Topographic variability and interocular symmetry of yellow choroidal thickness using optical coherence tomography with enhanced depth imaging. Invest Ophthalmol Vis Sci. 2012;53:975–985. doi:10.1167/jovs.11-8771

18. Sogawa K, Nagaoka T, Takahashi A, Tanano I, Tani T, Ishihazawa A, et al. Relationship between choroidal thickness and choroidal circulation in healthy young adults. Am J Ophthalmol. 2012;153:1129–1132. doi:10.1016/j.aip.2011.11.005

19. Kim M, Kim SS, Kwon HM, Koch HJ, Leeward SK. The relationship between choroidal thickness and actual perfusion pressure in young, healthy subjects: an optical coherence tomography study with enhanced depth imaging. Invest Ophthalmol Vis Sci. 2012;53:7710–7717. doi:10.1167/jovs.12-10464

20. Alwasisi AA, Adhi M, Zhang JY, Regatieri KV, M-Kourami A, Salem D, et al. Acute exercise-induced changes in systolic blood pressure do not alter choroidal thickness measured with a portable spectral optical coherence tomography. Retina. 2012;33:160–165. doi:10.1097/AE.0001363182618622

21. Usui S, Ikuno Y, Miki A, Matsushita K, Yasuno Y, Nishida K. Assessment of choroidal thickness using high-penetration long-wavelength optical coherence tomography in high-myopic normal-tension glaucoma. Am J Ophthalmol. 2012;153:10–16. doi:10.1016/j.aip.2011.05.037

22. Tang KS, Ouyang Y, Ruiz J, Sadda SR. Diurnal variations in choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53:261–266. doi:10.1167/jovs.11-8782

23. Guyer DR, Los Angeles Jamuzzi, Slacker JS, Sorenson JA, Ho A, Orlock D. Digital indocyanine green videocapography of central serous chorioretinopathy. Arch Ophthalmol. 1994;112:1057–1062. doi:10.1001/archopht.199410090200063023

24. Manjunath V, Fujimoto JG, Duker JS. Cirrus HD-OCT high-definition imaging is another available tool for visualizing the choroidal displacement with the finding that choroidal thickness is increased in central serous chorioretinopathy compared with normal eyes. Retina. 2010;30:1320–1321. doi:10.1097/AE.00013631816798b1

25. Imamura Y, Fujiwara T, Margolis R, Spide RF. Improved depth optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29:1469–1473. doi:10.1097/AE.0001363181660483

26. Maruko I, Iida T, Sugano Y, Ojima A, Ogasawara M, Spide RF. Subfoveal choroidal thickness after treatment of central serous chorioretinopathy. Ophthalmology. 2010;117:1792–1799. doi:10.1016/j.ophtha.2010.01.023

27. Jirarattanasopa P, Ooto S, Tsujikawa A, Yamashiro K, Hangai M, Hirata M, et al. Assessment of macular choroidal thickness by optical coherence tomography and angiographic changes in central serous chorioretinopathy. Ophthalmology. 2012;119:1666–1676. doi:10.1016/j.ophtha.2012.02.021

28. Pryde A, Larsen M. Choroidal thickness after extrafoveal photodynamic therapy with verteprofil in patients with central serous chorioretinopathy. Acta Ophthalmol. 2011;90:738–743. doi:10.1111/j.1755-3768.2011.02157.x

29. Kim YuT, Kang SV, Bai RH. Choroidal thickness of both eyes in patients with unilateral active central serous chorioretinopathy. Eye (Cond). 2011;25:1635–1640. doi:10.1038/cye.2011.258

30. Iida T, Kishi S, Hagimura N, Shimizu K. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. Retina. 1999;19:508–512. doi:10.1097/00006982-199911000-00005

31. Vance SK, Imamura Y, Freund KR. Effect of sildenafil citrate on choroidal thickness determined by optical coherence tomography with enhanced depth imaging. Retina. 2011;31:332–335. doi:10.1097/AE.00013631816608x

32. Kim DW, Silverman HH, Chan RW, Hanifar AA, Rondeau M, Lloyd H, et al. Measurement of choroidal perfusion and thickness after systemic sildenafil. Acta Ophthalmol. 2013;91:183–188. doi:10.1111/j.1755-3768.2011.02305.x

33. Rosenbaum JT. Surveillance of macular degeneration – some inflammatory notes. N Engl J Med. 2012;567:768–770. doi:10.1056/NFLRthCIFA01973

34. Friedman E. Hemodynamic model of the pathogenesis of age-related macular degeneration. Am J Ophthalmol. 1997;124:677–682. doi:10.1016/S0002-9394(14):70906-7

35. Harris A, Chang HS, Ciulla TA, Kagemann L. Progress in ocular blood flow measurement and its implications for our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res. 1999;18:669–687. doi:10.1016/s1550-9462(98)00037-8

36. Brockhauser LM. Lipid composition of the aging cetera and cornea. Ophthalmologia. 1975;171:83–85. doi:10.1159/000307448

37. Wood A, Bluns A, Margrain T, Drexler W, Poyajaj B, Esmaeelpour M, et al. Retinal and choroidal thickness in early age-related macular degeneration. Am J Ophthalmol. 2011;152:1030–1038. doi:10.1016/j.aip.2011.05.031

38. Chang SE, Kang SW, Lee JH, Kim YT. Choroidal thickness in polyphodal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology. 2011;118:840–845. doi:10.1016/j.ophtha.2010.09.001

39. Manjunath V, Goneri J, Fujimoto JG, Duker JS. Analysis of choroidal thickness in age-related macular degeneration using spectral-domain optical coherence tomography. Am J Ophthalmol. 2011;152:665–668. doi:10.1016/j.aip.2011.03.008

40. Switzer DV Jr, Mendon A LS, Saito M, Zweifel SA, Spide RF. Segregation of ophthalmoscopic characteristics by choroidal thickness in patients with early age-related macular degeneration. Retina. 2012;32:1265–1271. doi:10.1097/AE.000136318244528

41. Zweifel SA, Imamura Y, Spide TS, Fujiwara T, Spide RF. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen), in age-related macular degeneration. Ophthalmology. 2010;117:1775–1781. doi:10.1016/j.ophtha.2010.01.027

42. Arnold J, Sarks SH, Killingsworth MK, Sarks J. Reticular pseudodrusen. Risk factor for age-related maculopathy. Retina. 1995;15:183–191. doi:10.1016/j.aip.2014.01.023

43. Querques G, Querques I, Forte R, Massanna N, Coscas E, Soucel EH. Choroidal changes associated with reticular pseudodrusen. Invest Ophthalmol Vis Sci. 2012;53:1258–1263. doi:10.1167/jovs.11-8907

44. Jirarattanasopa P, Ooto S, Nakata I, Tsujikawa A, Yamashiro K, Oishi A, et al. Choroidal thickness, vascular hyperpermeability, and complement factor II in age-related macular degeneration and polypoid choroidal vasculopathy. Invest Ophthalmol Vis Sci. 2012;53:3663–3672. doi:10.1167/jovs.12-9619

45. Kim SV, Oh J, Kwon SS, Yoo J, Da K. Comparison of choroidal thickness in patients with normal eyes, early age-related maculopathy, neovascular age-related macular degeneration, central serous chorioretinopathy, and polypoidal choroidal vasculopathy. Retina. 2011;31: 1904–1911. doi:10.1097/IAE.0b013c3182180165

46. Koizumi H, Yamagishi T, Yamazaki T, Kawasaki R, Kinoshita S. Subroval choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol. 2011;249:1123–1128. doi:10.1007/s00417-011-1620-1

47. Uyama M, Matsubara T, Fukushima I, Matsunaga H, Iwashita K, Nagai Y, et al. Idiopathic polypoid choroidal vasculopathy in Japanese patients. Arch Ophthalmol. 1999;117: 1035–1042. doi:10.1001/archopht.1178.1035

48. Los Angeles Tamuzzi, Gardella A, Spide RF, Rabb M, Freund KR, Orlock DA. Expanding the clinical spectrum of idiopathic polypoid choroidal vasculopathy. Arch Ophthalmol. 1997;115: 478–485. doi:10.1001/archopht.1997.01100150480005

49. Los Angeles Tamuzzi, Freund KR, Goldbaum M, Scassellari-Sforzolini B, Guyer DR, Spade RF, et al. Polypoid choroidal vasculopathy was undergoing as central serous chorioretinopathy. Ophthalmology. 2000;107: 767–777. doi:10.1016/S0161-6420(99)00173-6

50. Spide RF, Los Angeles Tamuzzi, Slakter JS, Sorenson J, Orlach DA. Indocyanine green videorangography of idiopathic polypoid choroidal vasculopathy. Retina. 1995;15: 100–110. doi:10.1097/00006982-199515020-00003

51. Sasahara M, Tsujikawa A, Musashi K, Goto N, Ohtani A, Mandal M, et al. Polypoid choroidal vasculopathy with choroidal vascular hyperpermeability. Am J Ophthalmol. 2006;142: 601–607. doi:10.1016/j.ajo.200605051

52. Oono S, Tsujikawa A, Mori S, Tamura H, Yamashiro K, Yoshimura N. Thickness of photoreceptor layers in polypoidal choroidal vasculopathy and central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2010;248: 1077–1086. doi:10.1007/s00417-010-1338-5

53. Yamazaki T, Koizumi H, Yamagishi T, Kinoshita S. Subroval choroidal thickness and rerialization therapy for neovascular age-related macular degeneration: results at 12 months. Ophthalmology. 2012;119: 1621–1627. doi:10.1016/j.ophtha.2012.02.029

54. Bird AS, Marshall J. Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc UK. 1986;105: 674–682. doi:10.1136/pio.69.6397

55. Moore DJ, Hussain AA, Marshall J. Age-related changes in hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci. 1995;36: 1290–1297.

56. Casswell AG, Cohen D, Bird AS. Retinal pigment epithelial detachments in the elderly: classification and outcome. Br J Ophthalmol. 1985;69: 397–403. doi:10.1016/j.suroophthalmol.2007.02.008

57. Spide RF. Improved depth optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol. 2009;147: 644–652. doi:10.1016/j.ajo.2008.10.005

58. Coscas E, Coscas J, Querques J, Massamba N, Querques L, Bandello F, et al. Optical coherence tomography of fibrovascular pigment epithelium with enhanced depth imaging. Invest Ophthalmol Vis Sci. 2012;53:4147–4151. doi:10.1167/jovs.12-9878

59. Rao NA, Pathology of Vogt-Koyanagi-Harada disease. Int Ophthalmol. 2007;27: 81–85. doi:10.1007/s10792-006-9029-2

60. Maruko I, Iida T, Sugano Y, Oyamada H, Sekiyu T, Fujiwara T, et al. Subroval choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina. 2011;31:510–517. doi:10.1097/IAE.0b013c3182160165

61. Nakai K, Gomi F, Ikuno Y, Yasuno Y, Nushi T, Ohguro N, et al. Observations of choroidal Vogt-Koyanagi-Harada disease using high-generation optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2012;250: 1089–1095. doi:10.1007/s00417-011-1910-7

62. Fong AH, Lee KK, Wong D. Choroidal evaluation using extended depth spectral optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina. 2011;31: 502–509. doi:10.1097/IAE.0b013c3182083bcb

63. Nakayama M, Keino H, Okada AA, Watanabe T, Tak W, Inoue M, et al. Enhanced depth optical coherence tomography of the choroid in Vogt-Koyanagi-Harada disease. Retina. 2012;32: 2061–2069. doi:10.1097/IAE.0b013c3182562052

64. Chi S, Liu KD, Cheng KL, Lim WK, Yap A. Visual function in Vogt-Koyanagi-Harada patients. Graefes Arch Clin Exp Ophthalmol. 2005;245:785–790. doi:10.1007/s00417-005-1156-5

65. Yap A, Liu KD, Yeo Y, Chi S. Correlation between peri-patillary atrophy and corticosteroid therapy in patients with Vogt-Koyanagi-Harada disease. Eye (Lond). 2008;22: 240–245. doi:10.1038/sj/eec702591

66. da Silva FT, Sakata VM, Nakashima A, Hirata AD, Olistors E, Takahashi WA, et al. Improved depth optical coherence tomography in long-standing Vogt-Koyanagi-Harada disease. Br J Ophthalmol. 2012;97: 70–74. doi:10.1136/j.ophthalmol.2012.02.009

67. Bushenak N, Herbon K. Contribution of indocyanine green angiography to the evaluation and treatment of Vogt-Koyanagi-Harada disease. Ophthalmology. 2001;108: 54–64. doi:10.1016/s0161-6420(00)00428-0

68. Herbon K, Mantovani A, Bushenak N. Indocyanine green angiography in Vogt-Koyanagi-Harada disease: angiographic features and utility in patient monitoring. Int Ophthalmol. 2007;27: 173–182. doi:10.1016/s0029-9394(14)71964-6

69. Ho AS, Guyer DR, Fine SL, Macular hole. Surv Ophthalmol. 1998;42: 393–416. doi:10.1016/s0039-6257(97)00132-x

70. Reibaldi M, Bosha F, Avitabile T, Uva MG, Russo V, Zagati M, et al., Enhanced depth optical coherence tomography of the choroid for idiopathic macular hole: a cross-sectional prospective study. Am J Ophthalmol. 2011;151: 112–117. doi:10.1016/j.ajo.2010.07.004

71. Zeng J, Li J, Liu R, Chen H, Pan J, Tang S, et al. Choroidal thickness in both eyes patients with unilateral idiopathic macular hole. Ophthalmology. 2012;119: 2328–2333. doi:10.1016/j.ophtha.2012.06.008

72. Ayton LN, Geimer RH, Luu KD. Choroidal thickness profiles in retinitis pigmentosa. Clinical experiment "Ophthalmol". 2012; September 7. doi:10.1111/1442-9071.2012.02867.x

73. Dhoot DS, Ho S, Yuan A, Xu D, Shrivastava S, Ehlers J, et al. Assessment of choroidal thickness in retinitis pigmentosa using optical coherence tomography with enhanced depth imaging. Br J Ophthalmol. 2012;97: 66–69. doi:10.3389/jmcat.2021.783519

74. Schaal KB, Polliti S, Dimaris J. Is choroidal thickness important in idiopathic macular hole? Ophthalmology. 2012;109: 364–368. doi:10.1007/s00347-012-2529-8

75. Morgan KM, Schatz H. Involuntional macular thinning. Condition of the premacular hole. Ophthalmology. 1986;93: 153–161. doi:10.1016/s0161-6420(86)33767-9

76. Falsini B, Anselmi GM, Marangoni D, D’Esposito F, Fadda A, Di Renzo A, et al. Subroval choroidal blood flow and central retinal function in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52:1064–1069. doi:10.1167/jovs.10-5954

77. Langham ME, Kramer T. Reduced choroidal blood flow associated with retinitis pigmentosa. Eye (Lond). 1990;4: 374–381. doi:10.1038/cyc.1990.50

78. Shivdasani MN, Luu KD, Cicione R, Fallon JB, Allen J, Leuenberger J, et al. Evaluation of stimulus parameters and electrode geometry for an effective spatiotemporal retinal prosthesis. J Neural Eng. 2010;7:036008. doi:10.1088/1741-2560/7/3/036008

79. Yoo J, Rahman W, Chen H, Hooper K, Turhi PA, et al. Choroidal imaging in inherited retinal disease using optical coherence tomography with advanced depth imaging. Graefes Arch Clin Exp Ophthalmol. 2010;248:1719–1728. doi:10.1007/s00417-010-1437-3

80. Hidayat AA, Fine BS. Diabetic Choroidopathy. Light and electron microscopic observations of seven cases. Ophthalmology. 1985;92:512–522. doi:10.1016/S0161-6420(85)34013-7

81. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spide RF. Enhanced optical coherence tomography of the uvea in high myopia patients. Am J Ophthalmol. 2009;148: 445–450. doi:10.1016/j.ajo.2009.04.029

82. Ozdemir H, Arf S, Karachorlu M. Makula hastalaklamda optik koherens tomografi. Genes Tip Kitabevi. 2014. https://flipflashpages.uniflip.com/3/34834/341527/pub/document.pdf

Загрузки

Опубликован

2025-04-08

Как цитировать

Казымова, Л. (2025). Изменения толщины хориоидеи при различных глазных заболеваниях на ОКТ. Точка зрения. Восток–Запад, 12(1), 71–80. извлечено от https://east-west-journal.ru/index.php/east-west/article/view/490